

Gleniffer High School Numeracy Guide

A toolkit for pupils, parents, and staff

Introduction

What is the purpose of the booklet?

This booklet has been produced to give guidance to pupils and parents on how certain common Numeracy topics are taught in mathematics and throughout the school. It is hoped that using a consistent approach across all subjects will make it easier for pupils to progress.

How can it be used?

You can use this booklet to help you solve Number and Information Handling problems in any subject. Look up the relevant page for a step by step guide.

If your parents are helping you with your homework, they can refer to the booklet so they can see what methods you are being taught in school.

The booklet includes the number and information handling skills useful in subjects other than mathematics. For help with mathematics topics, please ask your teacher for help, or refer to your textbook. If your parents want to know what you are studying in mathematics you should show them the Gleniffer High School Maths Website or your latest Evaluation Sheet.

Why do some topics include more than one method?

In some cases (e.g. percentages), the method used will be dependent on the level of difficulty of the question, and whether or not a calculator is permitted.

For mental calculations, you should try to develop a variety of strategies so that you can use the most appropriate method in any given situation.

Table of Contents

TopicPage Number
Addition 5
Subtraction 6
Multiplication 7
Division 10
Order of Calculations (BODMAS) 11
Evaluating Formulae 12
Estimation - Rounding 13
Estimation - Calculations 14
Time 15
Fractions 17
Percentages 19
Ratio 24
Proportion 27
Information Handling - Tables 28
Information Handling - Bar Graphs 29
Information Handling - Line Graphs 30
Information Handling - Scatter 31
Graphs
Information Handling - Pie Charts 32
Information Handling - Averages 35
Mathematical Dictionary 36

Vocabulary for Numeracy

ADDITION (+)

add	plus
more	more than
altogether	total
increase	sum of

SUBTRACTION (-)

take away	minus
fewer than	less than
subtract	difference
decrease	How much more is..?

MULTIPLICATION (x)

DIVISION (\div)

share	shared between
divide	divisible by
factor	remainder
halve	equal groups of

Addition

Mental strategies

Example Calculate $54+27$

Method 1 Add tens, then add units, then add together
$50+20=70$
$4+7=11$
$70+11=81$

Method 2 Split up number to be added into tens and units and add separately.
$54+20=74 \quad 74+7=81$

Method 3 Round up to nearest 10, then subtract
$54+30=84$ but 30 is 3 too much so subtract 3 ;
$84-3=81$

Written Method

When adding numbers, ensure that the numbers are lined up according to place value. Start at right hand side, write down units, carry tens.

Example Add 3032 and 589

Subtraction

Multiplication 1

Mental Strategies

Example Find 39×6

Method 1

39 is $30+9$ so we can multiply each by 6 and add the results together

Method 2

Multiplication 2

Multiplying by multiples of 10 and 100

To multiply by 10 you move every digit one place to the left. To multiply by 100 you move every digit two places to the left.

Example 1 (a) Multiply 354 by 10 (b) Multiply 50.6 by 100 Th H T U Th H T U • \dagger
$354 \times 10=3540$
$50.6 \times 100=5060$
(c) 35×30
(d) 436×600
$35 \times 3=105 \quad 436 \times 6=2616$
$105 \times 10=1050$
$2616 \times 100=261600$
so $35 \times 30=1050$
so $436 \times 600=261600$
or
Multiply by 10, Multiply by 100,
then by 3
then by 6
$35 \times 10=350$
$436 \times 100=43600$
$350 \times 3=1050$
$43600 \times 6=261600$

Example 2
(a) 2.36×20
(b) 38.4×50
$2.36 \times 2=4.72$
$38.4 \times 5=192.0$
$4.72 \times 10=47.2$
$192.0 \times 10=1920$
so $2.36 \times 20=47.2$ so $38.4 \times 50=1920$

Multiplication 3

Long Multiplication (area method)

Example 1 Find 23×13

So $23 \times 13=299$

We extend this process for larger numbers

Example 2223×757

So $223 \times 757=168811$

Division

You should be able to divide by a single digit or by a multiple of 10 or 100 without a calculator.

Written Method

Example 1 There are 192 pupils in first year, shared equally between 8 classes. How many pupils are in each class?

8 divides 1 to give 0 remainder 1. This remainder is now carried over to make 19. Now 19 is divided by 8 which is 2 remainder 3 . This remainder is carried over to make 32. 32 divided by 8 is 4

There are 24 pupils in each class

Example 2 Divide 4.74 by 3

$$
3 \longdiv { 4 . 5 8 } \longdiv { 4 \cdot 7 ^ { 2 } 4 }
$$

When dividing a decimal number by a whole number, the decimal points must stay in line.

Example 3 A jug contains 2.2 litres of juice. If it is poured evenly into 8 glasses, how much juice is in each glass?

If you have a remainder at the end of a calculation, add a zero onto the end of the decimal and continue with the calculation.
Each glass contains

Order of Calculation (BODMAS)

Consider this: What is the answer to $2+5 \times 8$?

Is it $7 \times 8=56$ or $2+40=42$?

The correct answer is 42 .

Calculations which have more than one operation need to be done in a particular order. The order can be remembered by using the mnemonic BODMAS

The BODMAS rule tells us which operations should be done first. BODMAS represents:
(B)rackets
(O)f
(D)ivide
(M)ultiply
(A) dd
(S)ubract

Scientific calculators use this rule, some basic calculators may not, so take care in their use.

Example $1 \quad 15-12 \div 6 \quad$ BODMAS tells us to divide first

$$
\begin{aligned}
& =15-2 \\
& =13
\end{aligned}
$$

Example $2(9+5) \times 6 \quad$ BODMAS tells us to work out the

$$
=14 \times 6 \quad \text { brackets first }
$$

$$
=84
$$

Example $3 \quad 18+6 \div(5-2) \quad$ Brackets first
$=18+6 \div 3 \quad$ Then divide
$=18+2$ Now add
$=20$

Evaluating Formulae

Example 1

Use the formula $P=2 L+2 B$ to evaluate P when $L=12$ and $B=7$.

$$
\begin{array}{ll}
P=2 L+2 B & \text { Step 1: write formula } \\
{[P=2 \times L+2 \times B]} & \\
P=2 \times 12+2 \times 7 & \text { Step 2: substitute numbers for letters } \\
P=24+14 & \text { Step 3: start to evaluate (BODMAS) } \\
P=38 & \text { Step 4: write answer }
\end{array}
$$

Example 2

Use the formula $I=\frac{V}{R}$ to evaluate I when $V=240$ and $R=40$

$$
\begin{aligned}
& I=\frac{V}{R} \\
& I=\frac{240}{40} \\
& I=240 \div 40 \\
& I=6
\end{aligned}
$$

Example 3

Use the formula $F=32+1.8 C$ to evaluate F when $C=20$

$$
\begin{aligned}
& F=32+1.8 C \\
& F=32+1.8 \times 20 \\
& F=32+36 \\
& F=68
\end{aligned}
$$

Estimation : Rounding

Numbers can be rounded to give an approximation. 2652

TIFF (Uncompressed ${ }^{\text {QuickTime }}{ }^{\mathrm{M}}$ and a
are needed to see this picture.

2600	2610	2620	2630	2640	2650	2660	2670	2680	2690	2700

2652 rounded to the nearest 10 is 2650 .
2652 rounded to the nearest 100 is 2700 .
When rounding numbers which are exactly in the middle, convention is to round up.
7865 rounded to the nearest 10 is 7870 .

The same principle applies to rounding decimal numbers.

In general, to round a number, we must first identify the place value to which we want to round. We must then look at the next digit to the right (the "check digit") - if it is 5 or more round up.

Example 1 Round 46753 to the nearest thousand.

6 is the digit in the thousands column - the check digit (in the hundreds column) is a 7 , so round up.

46753
$=47000$ to the nearest thousand

Example 2 Round 1.57359 to 2 decimal places
The second number after the decimal point is a 7 - the check digit (the third number after the decimal point) is a 3 , so round down.
$1.5 \underline{7} 359$
$=1.57$ to 2 decimal places

Estimation: Calculation

Example 1

Tickets for a concert were sold over 4 days. The number of tickets sold each day was recorded in the table below. How many tickets were sold in total?

Monday	Tuesday	Wednesday	Thursday
486	205	197	321

Estimate $=500+200+200+300=1200$

Calculate:

Example 2

A bar of chocolate weighs 42 g . There are 48 bars of chocolate in a box. What is the total weight of chocolate in the box?

Estimate $=50 \times 40=2000 g$
Calculate:
42
$\begin{array}{r}\times 48 \\ \hline 336\end{array}$
$\begin{array}{r}1680 \\ \hline 2016 \\ \hline\end{array}$
Answer $=2016 \mathrm{~g}$

Time 1

12-hour clock

Time can be displayed on a clock face, or digital clock.

05: 15

> These clocks both show fifteen minutes past five, or quarter past five.

When writing times in 12 hour clock, we need to add a.m. or p.m. after the time.
a.m. is used for times between midnight and 12 noon (morning)
p.m. is used for times between 12 noon and midnight (afternoon / evening).

24-hour clock

In 24 hour clock, the hours are written as numbers between 00 and 24. Midnight is expressed as 0000 . After 12 noon, the hours and numbered $13,14,15$ etc. We get these new numbers by adding 12 to the time, eg 6 pm is $12+6=18$

Examples
$9.55 \mathrm{am} \longrightarrow 0955$ hours
$3.35 \mathrm{pm} \longrightarrow 1535$ hours
$12.20 \mathrm{am} \longrightarrow 0020$ hours
0216 hours $\longrightarrow 2.16 \mathrm{am}$
2045 hours $\longrightarrow 8.45 \mathrm{pm}$

Time 2

Time Facts

In 1 year, there are: 365 days (366 in a leap year)
52 weeks
12 months

The number of days in each month can be remembered using the rhyme: "30 days hath September, April, June and November, All the rest have 31, Except February alone, Which has 28 days clear, And 29 in each leap year."

Distance, Speed and Time.

For any given journey, the distance travelled depends on the speed and the time taken. If speed is constant, then the following formulae apply:

$$
\begin{aligned}
& \text { Distance }=\text { Speed } \times \text { Time } \\
& \text { or } \\
& \text { Speed }=\text { Distance } \div \text { Time } \\
& \text { or } \\
& \text { Time }=\text { Distance } \div \text { Speed }
\end{aligned} \text { or } \quad T=\frac{D}{T} .
$$

Example Calculate the speed of a train which travelled 450 km in 5 hours

$$
\begin{aligned}
& S=\frac{D}{T} \\
& S=450 \div 5 \\
& S=90 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Fractions 1

Addition, subtraction, multiplication and division of fractions are studied in mathematics.
However, the examples below may be helpful in all subjects.

Understanding Fractions

Example

A necklace is made from black and white beads.

What fraction of the beads are black?
There are 3 black beads out of a total of 7 , so $\frac{3}{7}$ of the beads are black.

Equivalent Fractions

Example

What fraction of the flag is shaded?

6 out of 12 squares are shaded. So $\frac{6}{12}$ of the flag is shaded.
It could also be said that $\frac{1}{2}$ the flag is shaded.
$\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions because 6 goes into 6 once and into 12 twice.

Fractions 2

Simplifying Fractions

The top of a fraction is called the numerator, the bottom is called the denominator.
To simplify a fraction, divide the numerator and denominator of the fraction by the same whole number.
Example 1
(a)

(b)
8
$\frac{2}{3}$
$\div 8$

This may need to be done repeatedly until the numerator and denominator are the smallest possible whole numbers - the fraction is then said to be in it's simplest form.

Example 2 Simplify $\frac{36}{60} \quad \frac{36}{60}=\frac{36 \div 6}{60 \div 6}=\frac{6}{10}=\frac{3}{5}$ (simplest form)

Calculating Fractions of a Quantity

To find the fraction of a quantity, divide by the denominator.
To find $\frac{1}{2}$ divide by 2 , to find $\frac{1}{3}$ divide by 3 , to find $\frac{1}{7}$ divide by 7 etc.

Example 1 Find $\frac{1}{5}$ of $£ 150$

$$
\frac{1}{5} \text { of } £ 150=£ 150 \div 5=£ 30
$$

Example 2 Find $\frac{3}{4}$ of 48

$$
\begin{aligned}
& \frac{1}{4} \text { of } 48=48 \div 4=12 \\
& \text { so } \frac{3}{4} \text { of } 48=3 \times 12=36
\end{aligned}
$$

To find $\frac{3}{4}$ of a quantity, start by finding $\frac{1}{4}$

Percentages 1

Percent means out of 100.
A percentage can be converted to an equivalent fraction or decimal.
36% means $\frac{36}{100}$
36% is therefore equivalent to $\frac{9}{25}$ (by simplifying) and 0.36 (by $36 \div$ 100)

Common Percentages

Some percentages are used very frequently. It is useful to know these as fractions and decimals.

Percentage	Fraction	Decimal
1%	$\frac{1}{100}$	0.01
10%	$\frac{10}{100}=\frac{1}{10}$	0.1
20%	$\frac{20}{100}=\frac{1}{5}$	0.2
25%	$\frac{25}{100}=\frac{1}{4}$	0.25
$331 / 3 \%$	$\frac{1}{3}$	$0.333 \ldots$
50%	$\frac{50}{100}=\frac{1}{2}$	0.5
$662 / 3 \%$	$\frac{2}{3}$	$0.666 \ldots$
75%	$\frac{75}{100}=\frac{3}{4}$	0.75

Percentages 2

There are many ways to calculate percentages of a quantity. Some of the common ways are shown below.

Non- Calculator Methods
Method 1 Using Equivalent Fractions
Example Find 25% of $£ 640$

$$
25 \% \text { of } £ 640=\frac{1}{4} \text { of } £ 640=£ 640 \div 4=£ 160
$$

Method 2 Using 1\%

In this method, first find 1% of the quantity (by dividing by 100), then multiply to give the required value.

Example Find 9% of 200 g

$$
\begin{aligned}
& 1 \% \text { of } 200 \mathrm{~g}=\frac{1}{100} \text { of } 200 \mathrm{~g}=200 \mathrm{~g} \div 100=2 \mathrm{~g} \\
& \text { so } 9 \% \text { of } 200 \mathrm{~g}=9 \times 2 \mathrm{~g}=18 \mathrm{~g}
\end{aligned}
$$

Method 3 Using 10\%

This method is similar to the one above. First find 10% (by dividing by 10), then multiply to give the required value.

Example Find 70% of $£ 35$
10% of $£ 35=\frac{1}{10}$ of $£ 35=£ 35 \div 10=£ 3.50$
so 70% of $£ 35=7 \times £ 3.50=£ 24.50$

Percentages 3

Non- Calculator Methods (continued)

The previous 2 methods can be combined so as to calculate any percentage.

Example Find 23% of $£ 15000$

$$
\begin{aligned}
& 10 \% \text { of } £ 15000=£ 1500 \text { so } 20 \%=£ 1500 \times 2=£ 3000 \\
& 1 \% \text { of } £ 15000=£ 150 \text { so } 3 \%=£ 150 \times 3=£ 450 \\
& 23 \% \text { of } £ 15000=£=£ 34500+£ 450=
\end{aligned}
$$

Finding VAT (without a calculator)

Value Added $\operatorname{Tax}(V A T)=15 \%$
To find VAT, firstly find 10\%

Example Calculate the total price of a computer which costs $£ 650$ excluding VAT
10% of $£ 650=£ 65 \quad$ (divide by 10)
5% of $£ 650=£ 32.50$ (divide previous answer by 2)
so 15% of $£ 650=£ 65+£ 32.50=£ 97.50$
Total price $=£ 650+£ 97.50=£ 747.50$

VAT is now charged at 20\%
Example Calculate the VAT on a TV that costs $£ 870$
Method 1: 20% is $\frac{20}{100}=\frac{1}{5}$

$$
\frac{1}{5} \text { of } £ 870=£ 870 \div 5=£ 174
$$

Method 2: 20% is $2 \times 10 \%$
10% of $£ 870=£ 87$
20% of $£ 870=2 \times £ 87=£ 174$

Percentages 4

Calculator Method

To find the percentage of a quantity using a calculator, change the percentage to a decimal, then multiply.

Example 1 Find 23% of $£ 15000$

$$
\begin{aligned}
& 23 \%=0.23\left(\text { or } \frac{23}{100}\right) \\
& \text { so } 23 \% \text { of } £ 15000=0.23 \times £ 15000=£ 3450 \\
& (\text { or }(15000 \div 100) \times 23)
\end{aligned}
$$

We do not use the \% button on calculators. The methods taught in the mathematics department are all based on converting percentages to decimals or fractions.

Example 2 House prices increased by 19\% over a one year period. What is the new value of a house which was valued at $£ 236000$ at the start of the year?

$$
\begin{aligned}
19 \%=0.19 \text { so } \begin{aligned}
\text { Increase } & =0.19 \times £ 236000 \\
& =£ 44840 \\
\text { Value at end of year } & =\text { original value }+ \text { increase } \\
& =£ 236000+£ 44840 \\
& =£ 280840
\end{aligned}
\end{aligned}
$$

The new value of the house is $£ 280840$

Percentages 5

Finding the percentage

To find a percentage of a total, first make a fraction, then convert to a decimal by dividing the top by the bottom. This can then be expressed as a percentage.

Example 1 There are 30 pupils in Class 3A3. 18 are girls. What percentage of Class 3A3 are girls?
$\frac{18}{30}=18 \div 30=0.6(\times 100)=60 \%$
60% of 3 A3 are girls

Example 2 James scored 36 out of 44 his biology test. What is his percentage mark?
Score $=\frac{36}{44}=36 \div 44=0.81818 \ldots$

$$
=81.818 . . \%=82 \% \text { (rounded) }
$$

Example 3 In class 1×1, 14 pupils had brown hair, 6 pupils had blonde hair, 3 had black hair and 2 had red hair. What percentage of the pupils were blonde?

Total number of pupils $=14+6+3+2=25$
6 out of 25 were blonde, so, $\frac{6}{25}=6 \div 25=0.24=24 \%$

24\% were blonde.

Ratio 1

When quantities are to be mixed together, the
ratio, or proportion of each quantity is often
given. The ratio can be used to calculate the
amount of each quantity, or to share a total into
parts.

Writing Ratios

Example 1

To make a fruit drink, 4 parts water is mixed with 1 part of cordial.
The ratio of water to cordial is $4: 1$
(said "4 to 1")
The ratio of cordial to water is 1:4.
Order is important when writing ratios.

Example 2

In a bag of balloons, there are 5 red, 7 blue and 8 green balloons.

The ratio of red : blue : green is $5: 7: 8$

Simplifying Ratios

Ratios can be simplified in much the same way as fractions.

Example 1

Purple paint can be made by mixing 10 tins of blue paint with 6 tins of red. The ratio of blue to red can be written as $10: 6$

It can also be written as 5:3, as it is possible to split up the tins into 2 groups, each containing 5 tins of blue and 3 tins of red.

To simplify a ratio, divide each figure in the ratio by a common factor.

Ratio 2

Simplifying Ratios (continued)

Example 2

Simplify each ratio:
(a) $4: 6$
(b) $24: 36$
(c) 6:3:12
(a) $4: 6$
Divide each
figure by 2
(b) $24: 36$
$=2: 3$
Divide each
figure by 12
(c) 6:3:12
= 2:1:4

Divide each figure by 3

Example 3

Concrete is made by mixing 20 kg of sand with 4 kg cement. Write the ratio of sand : cement in its simplest form

$$
\text { Sand } \begin{aligned}
\text { Cement } & =20: 4 \\
& =5: 1
\end{aligned}
$$

Using ratios

The ratio of fruit to nuts in a chocolate bar is $3: 2$. If a bar contains 15 g of fruit, what weight of nuts will it contain?
$\left.\begin{array}{c|c}\text { Fruit } & \text { Nuts } \\ \hline \times 5\left(\begin{array}{c}3 \\ 15\end{array}\right. & 2 \\ 10\end{array}\right) \times 5$

So the chocolate bar will contain 10 g of nuts.

Ratio 3

Sharing in a given ratio

Example

Lauren and Sean earn money by washing cars. By the end of the day they have made £90. As Lauren did more of the work, they decide to share the profits in the ratio 3:2. How much money did each receive?

Step 1 Add up the numbers to find the total number of parts

$$
3+2=5
$$

Step 2 Divide the total by this number to find the value of each part
$£ 90 \div 5=£ 18$ in each part

Step 3 Multiply each figure by the value of each part
3 parts: $\quad 3 \times £ 18=£ 54$
2 parts: $2 \times £ 18=£ 36$
Step 4 Check that the total is correct
$£ 54+£ 36=£ 90$ V
Lauren received $£ 54$ and Sean received $£ 36$

Proportion

Two quantities are said to be in direct proportion if when one doubles the other doubles and if one is halved the other is halved.

It is often useful to make a table when solving problems involving proportion.

Example 1

A car factory produces 1500 cars in 30 days. How many cars would they produce in 90 days?

Days	Cars
$\times 3\left(\begin{array}{c}30 \\ 90\end{array}\right.$	$\left.\begin{array}{l}1500 \\ 4500\end{array}\right) \times 3$

The factory would produce 4500 cars in 90 days.

Example 2

5 adult tickets for the cinema cost $£ 27.50$. How much would 8 tickets cost?

The cost of 8 tickets is $£ 44$

Information Handling : Tables

It is sometimes useful to display information in graphs, charts or tables.

Example 1 The table below shows the average maximum temperatures (in degrees Celsius) in Barcelona and Edinburgh.

	J	F	M	A	M	J	J	A	S	O	N	D
Barcelona	13	14	15	17	20	24	27	27	25	21	16	14
Edinburgh	6	6	8	11	14	17	18	18	16	13	8	6

The average temperature in June in Barcelona is $24^{\circ} \mathrm{C}$

Frequency Tables are used to present information. Often data is grouped in intervals.

Example 2 Homework marks for Class 4B

$$
\begin{array}{lllllllllllllll}
27 & 30 & 23 & 24 & 22 & 35 & 24 & 33 & 38 & 43 & 18 & 29 & 28 & 28 & 27 \\
33 & 36 & 30 & 43 & 50 & 30 & 25 & 26 & 37 & 35 & 20 & 22 & 24 & 31 & 48
\end{array}
$$

Mark	Tally	Frequency		
$16-20$	$\\|\\|$	2		
$21-25$	$H \mid \\|$	7		
$26-30$	$H \mid\\| \\|$	9		
$31-35$	$H+\\|$	5		
$36-40$	$\\|\\|$	3		
$41-45$	$\\|$	2		
$46-50$	$\\|$	2		

Each mark is recorded in the table by a tally mark.
Tally marks are grouped in 5's to make them easier to read and count.

Information Handling: Bar Graphs

Bar graphs are often used to display data. The horizontal axis should show the categories or class intervals, and the vertical axis the frequency. All graphs should have a title, and each axis must be labelled.

Example 1 The graph below shows the homework marks for Class 4B.

Example 2 How do pupils travel to school?

When the horizontal axis shows categories, rather than grouped intervals, it is common practice to leave gaps between the bars.

Information Handling : Line Graphs

Line graphs consist of a series of points which are plotted, then joined by a line. All graphs should have a title, and each axis must be labelled. The trend of a graph is a general description of it.

Example 1 The graph below shows Heather's weight over 14 weeks as she follows an exercise programme.

The trend of the graph is that her weight is decreasing.

Example 2 Graph of temperatures in Edinburgh and Barcelona.

Information Handling: Scatter Graphs

A scatter diagram is used to display the relationship between two variables.
A pattern may appear on the graph. This is called a correlation.

Example The table below shows the height and arm span of a group of first year boys. This is then plotted as a series of points on the graph below.

Arm Span (cm)	150	157	155	142	153	143	140	145	144	150	148	160	150	156	136
Height (cm)	153	155	157	145	152	141	138	145	148	151	145	165	152	154	137

Note: In our table Arm span is first so it is plotted on the horizontal axis and Height is on the bottom so it is plotted on the vertical axis.

The graph shows a general trend, that as the arm span increases, so does the height. This graph shows a positive correlation.

The line drawn is called the line of best fit. This line can be used to provide estimates. For example, a boy of arm span 150 cm would be expected to have a height of around 151 cm .

Note that in some subjects, it is a requirement that the axes start from zero.

Information Handling : Pie Charts

Abstract

A pie chart can be used to display information. Each sector (slice) of the chart represents a different category. The size of each category can be worked out as a fraction of the total using the number of divisions or by measuring angles.

Example 30 pupils were asked the colour of their eyes. The results are shown in the pie chart below.

How many pupils had brown eyes?
The pie chart is divided up into ten parts, so pupils with brown eyes represent $\frac{2}{10}$ of the total.
$\frac{2}{10}$ of $30=6$ so 6 pupils had brown eyes.

If no divisions are marked, we can work out the fraction by measuring the angle of each sector.

The angle in the brown sector is 72°. so the number of pupils with brown eyes
$=\frac{72}{360} \times 30=6$ pupils.
If finding all the values, you can check your answers - the total should be 30 pupils.

Information Handling : Pie Charts 2

Drawing Pie Charts

Example: In a survey about television programmes, a group of people were asked what was their favourite soap. Their answers are given in the table below. Draw a pie chart to illustrate the information.

Soap	Number of people
Eastenders	28
Coronation Street	24
Emmerdale	10
Hollyoaks	12
None	6

Total number of people $=80$
Eastenders $\quad=\frac{28}{80} \times 360$
Coronation Street $=\frac{24}{80} \times 360$
Emmerdale
$=\frac{10}{80} \times 360$
Check that the total = 360́ㅗㅇ

Hollyoaks
$=\frac{12}{80} \times 360$
None
$=\frac{8}{80} \times 360$

Information Handling: Pie Charts 3

Drawing Pie Charts

Example: In another survey about chocolate bars, a group of people were asked what their favourite chocolate bar. Their answers are given in the table below. Draw a pie chart to illustrate the information.

Chocolate Bar	Percentage (\%)
Mars	15
Twirl	30
Dime	10
Crunchie	25
Dairy Milk	20

Total percentage: 100\%

Mars $\quad=15 \%$ of $360=54^{\circ}$
Twirl $\quad=30 \%$ of $360=108^{\circ}$
Dime $\quad=10 \%$ of $360=36^{\circ}$
Crunhcie $=25 \%$ of $360=90^{\circ}$

Favourite Chocolate Bars

Information Handling : Averages

Abstract

To provide information about a set of data, the average value may be given. There are 3 types of average value - the mean, the median and the mode.

Mean - "average"

The mean is found by adding all the data together and dividing by the number of values.

Median - "middle"

The median is the middle value when all the data is written in numerical order (if there are two middle values, the median is half-way between these values).

Mode - "most common"

The mode is the value that occurs most often.

Range

The range of a set of data is a measure of spread.
Range $=$ Highest value - Lowest value

Example Class 1A4 scored the following marks for their homework assignment. Find the mean, median, mode and range of the results.

```
7, 9, 7, 5, 6, 7, 10, 9, 8, 4, 8, 5, 7, 10
Mean = 午9+7+5+6+7+10+9+8+4+8+5+7+10
    =102\div14 Mean = 7.3 to 1 decimal place
```

Ordered values: $4,5,5,6,7,7,7,7,8,8,9,9,10,10$ Median = 7

7 is the most frequent mark, so Mode $=7$
Range $=10-4=6$

Mathematical Dictionary (Key words):

Add; Addition $(+)$	To combine 2 or more numbers to get one number (called the sum or the total) Example: $12+76=88$
a.m.	(ante meridiem) Any time in the morning (between midnight and 12 noon).
Approximate	An estimated answer, often obtained by rounding to nearest 10, 100 or decimal place.
Calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
Data	A collection of information (may include facts, numbers or measurements).
Denominator	The bottom number in a fraction (the number of parts into which the whole is split).
Difference (-)	The amount between two numbers (subtraction). Example: The difference between 50 and 36 is 14 $50-36=14$
Division (\div)	Sharing a number into equal parts. $24 \div 6=4$
Double	Multiply by 2.
Equals (=)	Makes or has the same amount as.
Equivalent fractions	Fractions which have the same value. Example $\frac{2}{4}$ and $\frac{1}{2}$ are equivalent fractions
Estimate	To make an approximate or rough answer, often by rounding.
Evaluate	To work out the answer.
Even	A number that is divisible by 2. Even numbers end with $0,2,4,6$ or 8 .
Factor	A number which divides exactly into another number, leaving no remainder. Example: The factors of 15 are $1,3,5,15$.
Frequency	How often something happens. In a set of data, the number of times a number or category occurs.
Greater than (>)	Is bigger or more than. Example: 10 is greater than 6. $10>6$
Least	The lowest number in a group (minimum).
Less than (<)	Is smaller or lower than. Example: 15 is less than $21.15<21$.

Maximum	The largest or highest number in a group.
Mean	The arithmetic average of a set of numbers (see p32)
Median	Another type of average - the middle number of an ordered set of data (see p32)
Minimum	The smallest or lowest number in a group.
Minus (-)	To subtract.
Mode	Another type of average - the most frequent number or category (see p32)
Most	The largest or highest number in a group (maximum).
Multiple	A number which can be divided by a particular number, leaving no remainder. Example Some of the multiples of 4 are $8,16,48,72$
Multiply (x)	To combine an amount a particular number of times. Example $6 \times 4=24$
Negative Number	A number less than zero. Shown by a minus sign. Example -5 is a negative number.
Numerator	The top number in a fraction.
Odd Number	A number which is not divisible by 2. Odd numbers end in $1,3,5,7$ or 9.
Operations	The four basic operations are addition, subtraction, multiplication and division.
Order of	The order in which operations should be done. BODMAS (see p9)
operations	The sum of a group of numbers (found by adding).
Place value	The value of a digit dependent on its place in the number. Example: in the number $1573.4, ~ t h e ~$
Share has a place	
value of 100.	

